Convex Optimization
Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.
List Price: $ 95.00
Price: [wpramaprice asin=”0521833787″]
[wpramareviews asin=”0521833787″]
The way to go for introducing optimization,
My reasoning in giving it such praise is my preference for the rather unusual methodology it takes in introducing you to optimization. Most books I have seen on linear programming or nonlinear programming tackle a few standard problems, introduce what is necessary in terms of definitions and proofs, and then focus on the algorithms that solve these standard problems (conjugate gradient et. al.), how they work, their pitfalls, etc. While this is undoubtedly useful material (which Boyd does cover for a good deal in the final chapters), the simple fact of the matter is these algorithms are available as standard methods in optimization packages (which are abstracted from the user), and unless you are actually going into developing, implementing and tweaking algorithms, this quite honestly is useless.
What this book attempts to do, and does very well in my opinion, is to teach you to recognize convexity that’s present in problems that are first glance appear to be so incredibly removed from optimization that you might never consider it. This book spends the first 100 pages or so just devoted to building a “calculus” of convexity, if you will, so that you know through what operations convexity is preserved, and you develop intuition as to the potential to use convex optimization in problems in your particular field or application. As such, the first part of the books is focused on building up the skill set, the second part to applications of convex programming, and only the third to the actual algorithms.
A word of warning: some of the explanations (especially in Chapter 4 which focuses on types of convex programs and equivalence of programs) are very general, which won’t be satisfying to certain readers who need solid examples to reinforce the concepts. Also, a lot of the material can be quite challenging, requiring a bit of mental gymnastics. However, if you are accompanying your study with the problems at the end of each chapter, you’re certain to get practice and demystify the concepts.
In sum, all things considered, a great text.
0
Was this review helpful to you?

A very good starting point for convex optimization,
0
Was this review helpful to you?

Excelent reference both for theory and practice,
0
Was this review helpful to you?
